

Муниципальный этап Всероссийской олимпиады школьников по физике

 $|H(t)|_{V(t)}$ $|+|_{2m}$ $|+|_{2m}$

10 класс, 2025/2026 учебный год Длительность 3 часа 50 минут Максимум 50 баллов.

Задача № 1. Две пушки

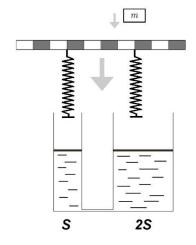
Из пушки, наклоненной под углом $\alpha = 30^{0}$ к горизонту, производят выстрел в сторону точно такой же пушки, наклоненной под углом $\beta = 60^{0}$ к горизонту и находящейся на расстоянии L = 1 км от первой.

- 1) Чему равна дальность полета каждого из снарядов?
- 2) Чему равны высота и время полета каждого из снарядов?
- 3) Через какой промежуток времени надо выстрелить из второй пушки, чтобы снаряды столкнулись в полете?

Начальная скорость снарядом $v_0 = 120$ м/с, сопротивление воздуха не учитывать.

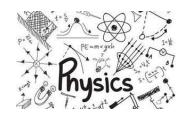
Задача № 2. Ледяной пассажир, v2.0.

В калориметр, содержащий $m_{\rm B}=200~$ г воды при температуре $t_{\rm B}=30\,^{\circ}{\rm C}$, бросают кусок льда массой $m_{\rm H}=90~$ г, в котором находится стальная шайба массой $m_{\rm H}=10~$ г. Температура льда и шайбы $t_{\rm A}=-5\,^{\circ}{\rm C}$. Удельная теплоемкость воды $c_{\rm B}=4200~$ Дж/(кг $^{\circ}{\rm C}$), удельная теплота плавления льда $\lambda=330~$ кДж/кг, удельная теплоемкость стали $c_{\rm CT}=500~$ Дж/(кг $^{\circ}{\rm C}$). Теплоемкостью калориметра пренебречь.


- 1) Какая температура установится в калориметре?
- 2) На сколько изменится уровень воды в калориметре после установления теплового равновесия? Плотность воды $\rho_{\rm B}=1000~{\rm kr/m^3}$, плотность льда $\rho_{\rm \pi}=900~{\rm kr/m^3}$, плотность стали $\rho_{\rm cr}=7800~{\rm kr/m^3}$, площадь дна калориметра $S=100~{\rm cm^2}$.

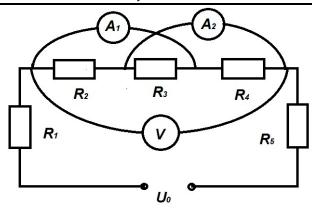
Задача № 3. Балансир Гука-Паскаля

Две внешне неотличимые пружины, имеющие жесткости k и 2k, прикрепили к однородной массивной балке, как показано на рисунке. Конструкцию устанавливают на тонкие легкие поршни сообщающихся сосудов, сечения которых отличаются в 2 раза (S и 2S), при этом балка принимает горизонтальное положение. После чего на балку кладут небольшой груз, в результате чего балка, не меняя горизонтальной ориентации, опускается на h.


Определите:

- 1) Какая из пружин имеет меньшую жесткость?
- 2) Плотность жидкости в сообщающихся сосудах ρ .
- 3) Maccy груза *т*.

Задача № 4. Электрические эксперименты.


Пять резисторов сопротивлениями $R_1 = 1$ Ом, $R_2 = 2$ Ом, $R_3 = 3$ Ом, $R_4 = 4$ Ом, $R_5 = 5$ Ом соединены с источником постоянного напряжения $U_0 = 9$ В. К резисторам подключили два амперметра и вольтметр. Определите их показания I_1 , I_2 , U. Приборы считайте идеальными. Провода, идущие к амперметрам, в месте касания друг с другом не имеют электрического контакта (см. верхнюю часть схемы).

Муниципальный этап Всероссийской олимпиады школьников по физике

10 класс, 2025/2026 учебный год Длительность 3 часа 50 минут Максимум 50 баллов.

Задача № 5. Температурный коэффициент (Псевдоэксперимент)

Оборудование: один лист миллиметровой бумаги формата А4, линейка.

Экспериментально было показано, что сопротивление металлов зависит от температуры следующим образом:

$$R_t = R_0(1 + \alpha t + \beta t^2 + \gamma t^3 + \cdots),$$

где R_t – сопротивление металлического проводника при температуре t, R_0 – сопротивление металлического проводника при температуре 0°C; α , β , γ – эмпирические коэффициенты, зависящие от природы металла. В интервале температур от 0 до 100°C можно ограничиться первым членом степенного ряда, то есть считать, что сопротивление проводника в первом приближении изменяется по закону

$$R_t = R_0(1 + \alpha t).$$

Коэффициент α называют температурным коэффициентом сопротивления. Он показывает относительное изменение первоначального сопротивления при нагревании его на один градус по шкале Цельсия.

В таблице приведены измерения сопротивления куска проволоки при комнатной температуре и дальнейшем ее нагревании.

t, °C					I						
<i>R, Ом</i>	79	79	82	83	85	87	88	90	91	93	95

Задание:

- 1) Построить график зависимости сопротивления от температуры.
- 2) С помощью графика определить значение температурного коэффициента сопротивления а.
- 3) Определить удельное сопротивление куска проволоки длиной 15 м при 20 $^{\circ}C$. Диаметр проволоки измеряли микрометром (погрешность \pm 0,01 мм) в разных местах, результаты измерений были записаны в таблицу:

№ п/п	1	2	3	4	5	6	7	8	9	10	11
d, mm	0,39	0,35	3,5	0,36	0,36	0,34	0,36	0,38	0,36	0,35	0,35