

Муниципальный этап Всероссийской олимпиады школьников по физике

 $|H(t)|_{V(t)} = |T|_{2m}$ $|T|_{2m} = |T|_$

11 класс, 2025/2026 учебный год Длительность 3 часа 50 минут Максимум 50 баллов.

Задача № 1. Две пушки

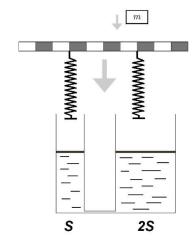
Из пушки, наклоненной под углом $\alpha = 30^{0}$ к горизонту, производят выстрел в сторону точно такой же пушки, наклоненной под углом $\beta = 60^{0}$ к горизонту и находящейся на расстоянии L = 1 км от первой.

- 1) Чему равны дальности полета снарядов, вылетающих из пушек?
- 2) Чему равны высота и время полета каждого из снарядов?
- 3) Через какой промежуток времени надо выстрелить из второй пушки, чтобы снаряды столкнулись в полете?

Начальная скорость снарядом $v_0 = 120$ м/с, сопротивление воздуха не учитывать.

Задача № 2. Цикл с изюминкой.

С одним молем идеального одноатомного газа совершают циклический процесс, состоящий из 1-2: изобарное расширение; 2-3: изохорное охлаждение; 3-1: изотермическое сжатие. Известно, что в процессе 2-3 температура уменьшилась в n=4 раза.

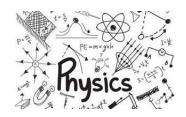

- 1) Найдите КПД тепловой машины, работающей по данному циклу.
- 2) Определите, во сколько раз максимальный объем в цикле больше минимального.

Задача № 3. Балансир Гука-Паскаля

Две внешне неотличимые пружины, имеющие жесткости k и 2k, прикрепили к однородной массивной балке, как показано на рисунке. Конструкцию устанавливают на тонкие легкие поршни сообщающихся сосудов, сечения которых отличаются в 2 раза (S и 2S), при этом балка принимает горизонтальное положение. После чего на балку кладут небольшой груз, в результате чего балка, не меняя горизонтальной ориентации, опускается на h.

Определите:

- 1) какая из пружин имеет меньшую жесткость;
- 2) плотность жидкости в сообщающихся сосудах ρ ;
- 3) массу груза m.



Задача № 4. 100 лет тому вперед.

Маленькому гусю по имени Аршит гости из будущего оставили схему одной из важнейших частей машины времени с просьбой о незамедлительной помощи. На ней была изображена электрическая цепь, состоящая из 2027 идеальных батареек с напряжением U каждая, 2027 конденсаторов с емкостями C, C/2, и т.д. (см. рис.) и одного резистора сопротивлением R. Посланцы хотели понять:

- 1) чему равна суммарная работа всех батареек в цепи с момента сборки за гигантское время, много большее времени жизни Вселенной;
- 2) какое количество теплоты выделится в цепи за то же самое гигантское время.

Помогите гусю Аршиту ответить на мольбу о помощи. Конденсаторы до сборки цепи были незаряжены. Считайте, что сборку цепи производят практически мгновенно.

Муниципальный этап Всероссийской олимпиады школьников по физике

11 класс, 2025/2026 учебный год Длительность 3 часа 50 минут Максимум 50 баллов.

Задача № 5. Температурный коэффициент (Псевдоэксперимент)

Оборудование: один лист миллиметровой бумаги формата А4, линейка.

Экспериментально было показано, что сопротивление металлов зависит от температуры следующим образом:

$$R_t = R_0(1 + \alpha t + \beta t^2 + \gamma t^3 + \cdots),$$

где R_t – сопротивление металлического проводника при температуре t, R_0 – сопротивление металлического проводника при температуре 0°C; α , β , γ – эмпирические коэффициенты, зависящие от природы металла. В интервале температур от 0 до 100°C можно ограничиться первым членом степенного ряда, то есть считать, что сопротивление проводника в первом приближении изменяется по закону

$$R_t = R_0(1 + \alpha t).$$

Коэффициент α называют температурным коэффициентом сопротивления. Он показывает относительное изменение первоначального сопротивления при нагревании его на один градус по шкале Цельсия.

В таблице приведены измерения сопротивления куска проволоки при комнатной температуре и дальнейшем ее нагревании.

t, °C	22	23	30	35	40	45	50	55	60	65	70
<i>R, Ом</i>	79	79	82	83	85	87	88	90	91	93	95

Задание:

- 1) Построить график зависимости сопротивления от температуры.
- 2) С помощью графика определить значение температурного коэффициента сопротивления α .
- 3) Определить удельное сопротивление куска проволоки длиной 15 м при 20 $^{\circ}$ С. Диаметр проволоки измеряли микрометром (погрешность $\pm 0,01$ мм) в разных местах, результаты измерений были записаны в таблицу:

№ п/п	1	2	3	4	5	6	7	8	9	10	11
d, mm	0,39	0,35	3,5	0,36	0,36	0,34	0,36	0,38	0,36	0,35	0,35