

Муниципальный этап Всероссийской олимпиады школьников по физике

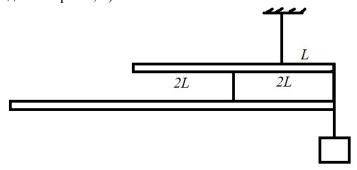
9 класс, 2025/2026 учебный год Длительность 3 часа 50 минут Максимум 50 баллов.

Задача № 1. Интервальный бег.

Группа из 11 спортсменов занимается в секции легкой атлетики. На тренировке они получили от тренера задание — пробежать длинную дистанцию интервалами: первые $120 \,\mathrm{m}$ - со скоростью $v = 2,5 \,\mathrm{m/c}$, следующие $120 \,\mathrm{m}$ - со скоростью $3v = 7,5 \,\mathrm{m/c}$, затем еще $120 \,\mathrm{m}$ - со скоростью v, а потом опять $120 \,\mathrm{m}$ со скоростью 3v, и так далее (через каждые $120 \,\mathrm{m}$ скорости чередуются). Спортсмены уходят со старта с интервалом в $2 \,\mathrm{cekyhgh}$. И бегут колонной, друг за другом.

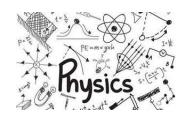
- 1) Какой будет максимальная длина колонны (расстояние между первым и последним спортсменами) по ходу выполнения задания?
- 2) Спустя какое минимальное время после старта первого спортсмена длина колонны станет максимальной?
- 3) Какой будет длина колонны через 13 минут после старта, если тренер до этого момента не остановит спортсменов?

Задача № 2. Ледяной пассажир, v2.0.


В калориметр, содержащий $m_{\rm B}=200~{\rm \Gamma}$ воды при температуре $t_{\rm B}=30^{\circ}{\rm C}$, бросают кусок льда массой $m_{\rm H}=90~{\rm \Gamma}$, в котором находится стальная шайба массой $m_{\rm H}=10~{\rm \Gamma}$. Температура льда и шайбы $t_{\rm H}=-5^{\circ}{\rm C}$. Удельная теплоемкость воды $c_{\rm B}=4200~{\rm Дж/(кг^{\circ}C)}$, удельная теплота плавления льда $\lambda=330~{\rm кДж/кг}$, удельная теплоемкость стали $c_{\rm CT}=500~{\rm Дж/(кг^{\circ}C)}$. Теплоемкостью калориметра пренебречь.

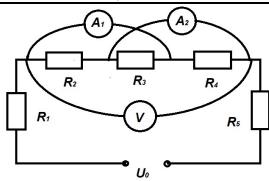
- 1) Какая температура установится в калориметре?
- 2) На сколько изменится уровень воды в калориметре после установления теплового равновесия? Плотность воды $\rho_{\rm B}=1000~{\rm kr/m^3}$, плотность льда $\rho_{\rm \pi}=900~{\rm kr/m^3}$, плотность стали $\rho_{\rm cr}=7800~{\rm kr/m^3}$, плотность да дна калориметра $S=100~{\rm cm^2}$.

Задача № 3. Стержни и нитки.


Из двух однородных стержней, четырех невесомых нитей и одного груза массой m собрали систему (см. рисунок). Стержни сделаны из одного материала, имеют одинаковое сечение и длины 4L и 6L. Система находится в равновесии, стержни горизонтальны и сделаны из одного материала.

Определите: 1) массу каждого стержня; 2) силы натяжения нитей.

Задача № 4. Электрические эксперименты.


Пять резисторов сопротивлениями $R_1 = 1$ Ом, $R_2 = 2$ Ом, $R_3 = 3$ Ом, $R_4 = 4$ Ом, $R_5 = 5$ Ом соединены с источником постоянного напряжения $U_0 = 9$ В. К резисторам подключили два амперметра и вольтметр. Определите их показания I_1 , I_2 , U. Приборы считайте идеальными. Провода, идущие к амперметрам, в месте касания друг с другом не имеют электрического контакта (см. верхнюю часть схемы).

Муниципальный этап Всероссийской олимпиады школьников по физике

9 класс, 2025/2026 учебный год Длительность 3 часа 50 минут Максимум 50 баллов.

Задача № 5. Температурный коэффициент (Псевдоэксперимент)

Оборудование: один лист миллиметровой бумаги формата А4, линейка.

Экспериментально было показано, что сопротивление металлов зависит от температуры следующим образом:

$$R_t = R_0(1 + \alpha t + \beta t^2 + \gamma t^3 + \cdots),$$

где R_t – сопротивление металлического проводника при температуре t, R_0 – сопротивление металлического проводника при температуре $0^{\circ}C$; α , β , γ – эмпирические коэффициенты, зависящие от природы металла. В интервале температур от 0 до $100^{\circ}C$ можно ограничиться первым членом степенного ряда, то есть считать, что сопротивление проводника в первом приближении изменяется по закону

$$R_t = R_0(1 + \alpha t)$$
.

Коэффициент α называют температурным коэффициентом сопротивления. Он показывает относительное изменение первоначального сопротивления при нагревании его на один градус по шкале Цельсия.

В таблице приведены измерения сопротивления куска проволоки при комнатной температуре и дальнейшем ее нагревании.

t, °C											
<i>R, Ом</i>	79	79	82	83	85	87	88	90	91	93	95

Задание:

- 1) Построить график зависимости сопротивления от температуры.
- 2) С помощью графика определить значение температурного коэффициента сопротивления α .
- 3) Определить удельное сопротивление куска проволоки длиной 15 м при 20 $^{\circ}$ С. Диаметр проволоки измеряли микрометром (погрешность $\pm 0,01$ мм) в разных местах, результаты измерений были записаны в таблицу:

	№ п/п	1	2	3	4	5	6	7	8	9	10	11
Ī	d, MM	0,39	0,35	3,5	0,36	0,36	0,34	0,36	0,38	0,36	0,35	0,35