Всероссийская олимпиада школьников по предмету Труд (технология)

2025/2026 учебный год

Муниципальный этап

Профиль «Техника, технологии и техническое творчество»

10-11 классы

Практическая работа

Автоматизированные технические системы

Заполняет участник (разборчиво)

Фамилия	
Имя	
Отчество (при наличии)	
Дата рождения	Число Месяц Год
Общеобразовательное учреждение (полностью)	
Класс	
ФИО учителя, (наставника) (полностью)	
Населенный пункт, район	

ВНИМАНИЕ! НА ОБОРОТЕ ЭТОГО ЛИСТА НИЧЕГО НЕ РАСПЕЧАТЫВАТЬ!

Не заполнять!

Сумма баллов	Члены жюри	
	ФИО	Подпись
	1.	
	2.	

Всероссийская олимпиада школьников по предмету Труд (технология) 2025/2026 учебный год Муниципальный этап Профиль «Техника, технологии и техническое творчество» 10-11 классы Практическая работа Автоматизированные технические системы

Внимательно ознакомьтесь с предложенным заданием.

Время на выполнение задания – 180 минут.

Этап 1.

Технические условия.

С помощью мультиметра измерьте напряжение на предложенных четырех светодиодах: белом, красном, желтом и синем. Для подключения используйте схему, изображенную на рисунке 1.

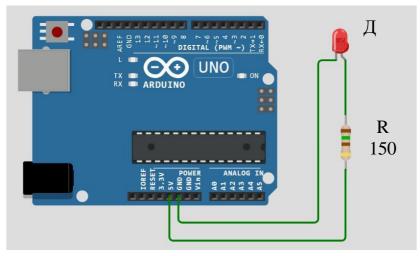


Рисунок 1

Заполните таблицу 1, рассчитайте относительное отклонение величины напряжения.

$$\varDelta(\%) = \frac{\textit{измеренная величина} - \textit{паспортная величина}}{\textit{паспортная величина}} \times 100\,\%$$

№ π/π	Светодиод	Паспортная величина напряжения	Измеренная величина напряжения	Относительное отклонение
1	Белый	3B		
2	Красный	2,5 B		
3	Синий	3,8 B		
4	Желтый	2,5 B		
D		4		

Вывод по выполнению этапа	1:
---------------------------	----

Этап 2.

Технические условия.

Выполните проектирование схемы, которая включает в себя ультразвуковой датчик (дальномер), красный светодиод \mathcal{J} , ограничивающее сопротивление R. При изменении показаний дальномера изменяется яркость светодиода (чем меньше расстояние от преграды до дальномера, тем ярче свечение светодиода) (см. рис. 2).

Потребляемый ток у светодиода принять 15 mA.

Схема питается от платы Arduino UNO (или Nano) клемма постоянного напряжения 5V.

Сопротивления предлагаются из стандартного набора к Arduino UNO (или Nano).

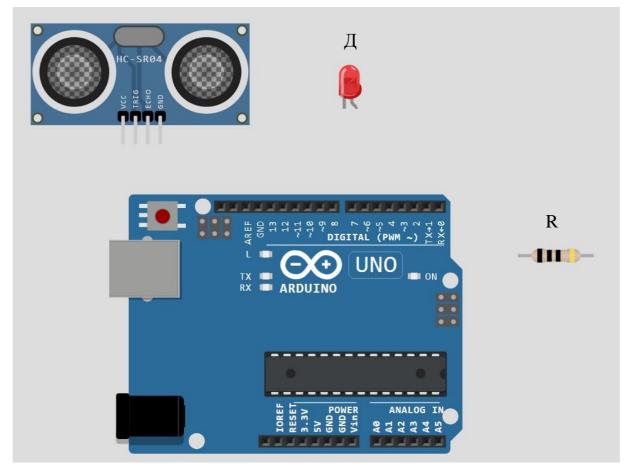


Рисунок 2

Для спроектированной схемы выполните задания 1 и 2.

Задание 1. Рассчитайте сопротивление светодиода $R_{\rm д1}$, $R_{\rm д2}$, $R_{\rm д3}$, $R_{\rm д4}$ и напряжение на светодиоде $U_{\rm д1}$, $U_{\rm д2}$, $U_{\rm д3}$, $U_{\rm д4}$, если величина силы тока в цепи соответствует I_1 =15mA, I_2 =10mA, I_3 =6mA, I_4 =0.29mA. Рассчитайте сопротивление $R_{\rm д}$ светодиода $\mathcal I$ согласно схеме, изображенной на рисунке 2, и для расчета возьмите изме- ренное напряжение из таблицы 1 этапа 1. Результаты занесите в таблицу 2.

Таблица 2

Расчетная величина	Значение
H апряжение на светодиоде $U_{{ t pl}}$ 1, B	
H апряжение на светодиоде $U_{{\scriptscriptstyle m L}2}$, B	
H апряжение на светодиоде $U_{{ t д}3}, B$	
H апряжение на светодиоде $U_{{ t ilde I}4}, B$	
C опротивление R_{II} , O м	
C опротивление $R_{\it Д2}$, $\it O$ м	
C опротивление $R_{\it Д3}$, $\it O$ м	
C опротивление $R_{\it Д4}$, $\it O$ м	
Сопротивление $R_{I\!\!A}$, Ом	

Задание 2. Создайте принципиальную схему в пакете «Компас-Электрик» или «Компас-Электрик Express». Сделайте скриншот схемы и сформируйте файл с расширением .doc Файл сохраните с именем и расширением: *Иванов-7класс-11школа-Уфа-схема.doc*. Или начертите в соответствии с ГОСТ- 2.702-2011.

Схема электрическая принципиальная		

Этап 3.

На монтажной плате соберите цепь, спроектированную на этапе 2. Проанализируйте предложенный скетч, внесите необходимые корректировки и выполните демонстрацию работы цепи: при уменьшении расстояния между ультразвуковым датчиком (дальномером) яркость светодиода увеличивается.

```
// Назначение пинов
const int trigPin = 1; // пин триггера дальномера
const int echoPin = 1; // пин эхо дальномера
const int ledPin = 1; // пин светодиода (с PWM)
void setup() {
 pinMode(trigPin, OUTPUT);
 pinMode(echoPin, INPUT);
 pinMode(ledPin, OUTPUT);
 Serial.begin(9600); // для отладки
void loop() {
 long duration, distance;
 // Генерируем короткий импульс для триггера
 digitalWrite(trigPin, LOW);
 delayMicroseconds(2):
 digitalWrite(trigPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(trigPin, LOW);
 // Читаем время эхо
 duration = pulseIn(echoPin, HIGH);
 // Расчет расстояния (в сантиметрах)
 distance = duration * 0.034 / 2;
 // Выводим расстояние в сериал для проверки
 Serial.print("Расстояние: ");
 Serial.print(distance);
 Serial.println(" cm");
 // Расчет яркости: чем ближе — тем ярче
 // Например, для расстояний от 2 до 100 см
 int brightness;
 if (distance < 2) {
  brightness = 255; // максимально ярко
 } else if (distance > 100) {
  brightness = 0; // очень далеко — свет выключен
 } else {
  // Чем ближе — тем ярче, линейно
  brightness = map(distance, 1, 1, 1, 1);
 // Установка яркости светодиода
```

```
analogWrite(ledPin, brightness);
 delay(100); // небольшой промежуток между измерениями
// Назначение пинов
const int trigPin = 9; // пин триггера дальномера
const int echoPin = 10; // пин эхо дальномера
const int ledPin = 11; // пин светодиода (с PWM)
void setup() {
 pinMode(trigPin, OUTPUT);
 pinMode(echoPin, INPUT);
 pinMode(ledPin, OUTPUT);
 Serial.begin(9600); // для отладки
void loop() {
 long duration, distance;
 // Генерируем короткий импульс для триггера
 digitalWrite(trigPin, LOW);
 delayMicroseconds(2);
 digitalWrite(trigPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(trigPin, LOW);
 // Читаем время эхо
 duration = pulseIn(echoPin, HIGH);
 // Расчет расстояния (в сантиметрах)
 distance = duration * 0.034 / 2;
 // Выводим расстояние в сериал для проверки
 Serial.print("Расстояние: ");
 Serial.print(distance);
 Serial.println(" cm");
 // Расчет яркости: чем ближе — тем ярче
 // Например, для расстояний от 2 до 100 см
 int brightness;
 if (distance < 2) {
  brightness = 255; // максимально ярко
 } else if (distance > 100) {
  brightness = 0; // очень далеко — свет выключен
  // Чем ближе — тем ярче, линейно
  brightness = map(distance, 20, 100, 255, 0);
 // Установка яркости светодиода
 analogWrite(ledPin, brightness);
 delay(100); // небольшой промежуток между измерениями
```

Откорректированный скетч сохраните с именем файла: *Иванов-7класс-11школа-Уфа-скетч.doc*.

Перечень отчетности:

- 1. Этап 1 таблица 1 и выводы выполнения этапа 1.
- 2. <u>Этап 2</u> таблица 2, файл *Иванов-7класс-11школа-Уфа-схема.doc* или чертеж схемы электрической принципиальной
- 3. <u>Этап 3</u> файл с откорректированным скетчем *Иванов-7класс-11школа- Уфа-скетч.doc*

Критерии оценивания практической работы по

автоматизированным техническим системам

No n/n	Критерии оценки	Макс. балл	Балл участника
Этап 1			
1	Этап 1. Сборка цепи на монтажной плате		
	по рисунку 1. Выполнение измерений	3	
	напряжения на светодиодах и заполнение	· ·	
	таблицы 1		
2	Этап 1. Расчет относительного отклонения	3	
	величины напряжения на светодиодах		
3	Этап 1. Заполнение таблицы 1 и формулирование вывода по выполнению	3	
	этапа		
	Этап 2		
4	Этап 2. Расчет величины сопротивления	3	
4	светодиода $R_{д1}$, $R_{д2}$, $R_{д3}$, $R_{д4}$, $Oм$	3	
5	Этап 2. Расчет величины напряжения на	3	
	светодиоде $U_{\rm д1},U_{\rm д2},U_{\rm д3},U_{\rm д4},B$	3	
6	Этап 2. Расчет величины сопротивления	3	
	светодиода $R_{\rm д}$, Ом		
7	Этап 2. Заполнение таблицы 2	1	
	Этап 2. Создание принципиальной схемы		
	или в пакете «Компас-Электрик» или	_	
8	«Компас-Электрик Express» или на листе в	4	
	соответствии с ГОСТ-2.702-2011 с		
	указанием величин расчетных		
	сопротивлений		
	Этап 3		
9	Этап 3. Сборка цепи для демонстрации	3	
10	технических условий на монтажной плате Этап 3. Корректирование скетча	4	
10		4	
11	Этап 3. Демонстрация работы собранной	5	
11	цепи в соответствии с техническими условиями		
12	Несоблюдение порядка на рабочем месте	-1	
14	Итого	35	
	111010	33	

Ответ для 3 этапа Ограничений по выбору номеров пинов для подключения светодиода и датчика у участников нет.