Всероссийская олимпиада школьников по предмету Труд (технология)

2025/2026 учебный год

Муниципальный этап

Профиль «Техника, технологии и техническое творчество»

9 класс

Практическая работа

Автоматизированные технические системы

Заполняет участник (разборчиво)

	,
Фамилия	
Имя	
Отчество (при наличии)	
Дата рождения	Число Месяц Год
Общеобразовательное учреждение (полностью)	
Класс	
ФИО учителя, (наставника) (полностью)	
Населенный пункт, район	

ВНИМАНИЕ! НА ОБОРОТЕ ЭТОГО ЛИСТА НИЧЕГО НЕ РАСПЕЧАТЫВАТЬ!

Не заполнять!

Сумма баллов	Члены жюри		
	ОИФ	Подпись	
	1.		
	2.		

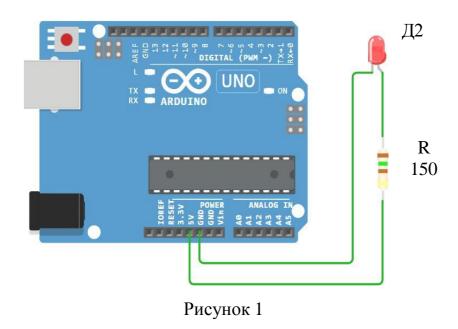
Всероссийская олимпиада школьников по предмету Труд (технология) 2025/2026 учебный год

Муниципальный этап

Профиль «Техника, технологии и техническое творчество»

9 класс

Практическая работа Автоматизированные технические системы


Внимательно ознакомьтесь с предложенным заданием.

Время на выполнение задания – 180 минут.

Этап 1.

Технические условия.

С помощью мультиметра измерьте напряжение на предложенных трех светодиодах: белом, красном и синем. Для подключения используйте схему, изображенную на рисунке 1.

Заполните таблицу 1, рассчитайте относительное отклонение величины напряжения.

$$\varDelta(\%) = \frac{\textit{измеренная величина} - \textit{паспортная величина}}{\textit{паспортная величина}} \times 100\,\%$$

№ Ω	Светодиод	Паспортная величина напряжения	Измеренная величина напряжения	Относительное отклонение
1	Белый	3B		
2	Красный	2,5 B		
3	Синий	3,8 B		

Вывод по выполнению этапа 1:

Этап 2.

Технические условия.

Выполните проектирование схемы, которая состоит из одной кнопки и трех светодиодов (белый, красный, синий). При нажатии на кнопку первый раз загорается белый светодиод \mathcal{I} 1 (остальные светодиоды \mathcal{I} 2 и \mathcal{I} 3 не горят), следующее нажатие на кнопку зажигает красный светодиод \mathcal{I} 2 (остальные светодиоды \mathcal{I} 1 и \mathcal{I} 3 не горят), следующее нажатие — загорается синий светодиод \mathcal{I} 3 (остальные светодиоды \mathcal{I} 1 и \mathcal{I} 2 не горят) и последнее нажатие — все светодиоды гаснут. Для спроектированной схемы выполните задания 1 и 2.

Величины компонентов выберите в соответствии с выполнением задания 1 этапа 2 (таблица 2).

Потребляемый ток у всех светодиодов принять 15 мА.

Схема питается от платы Arduino UNO (или Nano) клемма постоянного напряжения 5V (см. рис. 2).

Сопротивления предлагаются из стандартного набора к Arduino UNO (или Nano).

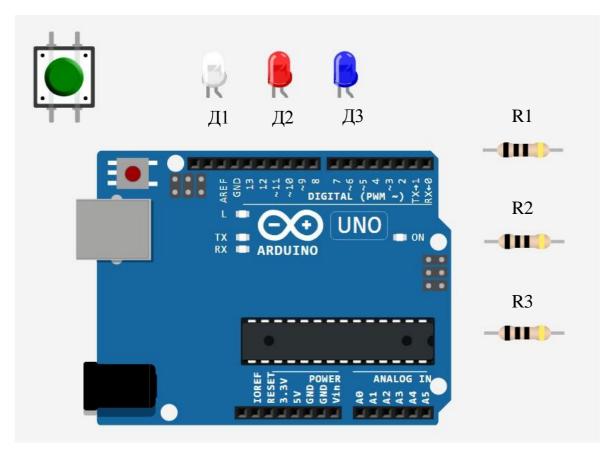
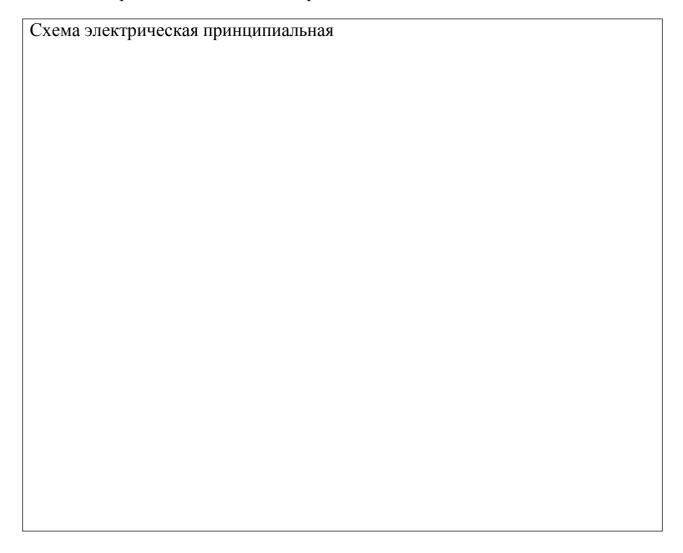


Рисунок 2


Задание 1. Рассчитайте ограничивающие сопротивления *R1*, *R2*, *R3* в цепи для светодиодов, если сила тока через светодиоды уменьшится на 25%, а напряжение будет соответствовать *измеренной* величине напряжения, записанной в таблице 1 этапа 1.

Рассчитайте силу тока в каждой цепи (протекающую через каждый светодиод) I_1 , I_2 , I_3 , и величину напряжения на каждом ограничивающем сопротивлении $U_{\rm R1}$, $U_{\rm R2}$, $U_{\rm R3}$. Результаты занесите в таблицу 2.

Таблица 2

Расчетная величина	Значение
Напряжение на ограничивающем	
сопротивлении R1, B	
Напряжение на ограничивающем	
сопротивлении R2, В	
Напряжение на ограничивающем	
сопротивлении R3, В	
C ила тока I_{l},A	
Сила тока І2, А	
Сила тока І3, А	
Сопротивление R1, Ом	
Сопротивление R2, Ом	
Сопротивление R3, Ом	

Задание 2. Создайте принципиальную схему в пакете «Компас-Электрик» или «Компас-Электрик Express». Сделайте скриншот схемы и сформируйте файл с расширением .doc Файл сохраните с именем и расширением: Иванов-7класс-11школа-Уфа-схема.doc. Или начертите в соответствии с ГОСТ- 2.702-2011.

Этап 3.

На монтажной плате соберите цепь, спроектированную на этапе 2. Проанализируйте предложенный скетч, внесите необходимые корректировки и вы- полните демонстрацию работы цепи: при нажатии на кнопку первый раз загорается белый светодиод $\mathcal{I}1$ (остальные выключены), следующее нажатие на кнопку зажигает красный светодиод $\mathcal{I}2$ (остальные выключены), следующее нажатие — загорается синий светодиод $\mathcal{I}3$ (остальные выключены) и последнее нажатие — все светодиоды гаснут.

```
const int ledPin1 = 1;
const int ledPin2 = 1;
const int ledPin3 = 1;
```

```
const int buttonPin = 1;
int buttonPressCount = 0; // Счетчик нажатий кнопки
                     // Индекс текущего активного светодиода (0, 1 или 2)
int currentLed = 0:
void setup() {
 pinMode(ledPin1, OUTPUT);
 pinMode(ledPin1, OUTPUT);
 pinMode(ledPin1, OUTPUT);
 pinMode(buttonPin, INPUT PULLUP);
 // Изначально выключаем все светодиоды
 digitalWrite(ledPin1, LOW);
 digitalWrite(ledPin2, LOW);
 digitalWrite(ledPin3, LOW);
void loop() {
 if (digitalRead(buttonPin) == LOW) { // Кнопка нажата
  delay(20);
  if (digitalRead(buttonPin) == LOW) { // Проверка после debounce
   buttonPressCount++; // Увеличиваем счетчик нажатий
   while (digitalRead(buttonPin) == LOW); // Ждем отпускания кнопки
   if (buttonPressCount <= 3) { // Если было меньше 4 нажатий
     // Выключаем все светодиоды
     digitalWrite(ledPin1, LOW);
     digitalWrite(ledPin1, LOW);
     digitalWrite(ledPin1, LOW);
     // Переключаемся к следующему светодиоду
     currentLed = (currentLed + 1) % 3; // 0 -> 1 -> 2 -> 0 -> ...
    // Включаем соответствующий светодиод
     if (currentLed == 0) {
      digitalWrite(ledPin1, HIGH);
     } else if (currentLed == 1) {
      digitalWrite(ledPin1, HIGH);
     } else {
      digitalWrite(ledPin1, HIGH);
   } else { // Если было 4 или больше нажатий
     // Выключаем все светодиоды
     digitalWrite(ledPin1, LOW);
     digitalWrite(ledPin1, LOW);
     digitalWrite(ledPin1, LOW);
    // Останавливаем программу (зацикливаемся)
     while (true); // Бесконечный цикл
   }
}
```

Откорректированный скетч сохраните с именем файла: *Иванов-7класс-11школа-Уфа-скетч.doc*.

Перечень отчетности:

- 1. Этап 1 таблица 1 и выводы выполнения этапа 1.
- 2. <u>Этап 2</u> таблица 2, файл *Иванов-7класс-11школа-Уфа-схема.doc* или чертеж схемы электрической принципиальной.
- 3. <u>Этап 3</u> файл с откорректированным скетчем *Иванов-7класс-11школа- Уфа-скетч.doc*

Время выполнения работы 180 минут.

Критерии оценивания практической работы по автоматизированным техническим системам

$N_{\underline{o}}$	Критерии оценки	Макс.	Балл		
n/n		балл	участника		
Этап 1					
	Этап 1. Сборка цепи на монтажной плате				
1	по рисунку 1. Выполнение измерений	3			
	напряжения на светодиодах и заполнение таблицы 1				
	Этап 1. Расчет относительного отклонения				
2	величины напряжения на светодиодах	3			
3	Этап 1. Заполнение таблицы 1 и	3			
3	формулирование вывода по выполнению	3			
	этапа Этап 2				
	Этап 2. Расчет величины ограничивающих				
4	сопротивлений <i>R1</i> , <i>R2</i> , <i>R3</i> , <i>Ом</i>	3			
_	Этап 2. Расчет величины силы тока через	3			
5	каждый светодиод I_1, I_2, I_3, A				
	Этап 2. Расчет величины напряжения на				
6	каждом ограничивающем сопротивлении	3			
	$U_{\rm R1},U_{\rm R2},U_{\rm R3},B$				
7	Этап 2. Заполнение таблицы 2	1			
	Этап 2. Создание принципиальной схемы				
	или в пакете «Компас-Электрик» или				
8	«Компас-Электрик Express» или на листе в	4			
	соответствии с ГОСТ-2.702-2011 с				
	указанием величин сопротивлений				
	Этап 3				
9	Этап 3. Сборка цепи для демонстрации	3			
	технических условий на монтажной плате				
10	Этап 3. Корректирование скетча	4			
	Этап 3. Демонстрация работы собранной	5			
11	цепи в соответствии с техническими				
	условиями				
12	Несоблюдение порядка на рабочем месте	-1			
	Итого	35			

Ответ для 3 этапа Ограничений по выбору номеров пинов для подключения светодиода и датчика у участников нет.